
Track and Vertex reconstruction
A. Salzburger, CERN

Big European Bubble Chamber at CERN, photograph http://www.cern.ch

http://www.robgendlerastropics.com/M31Page.html

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4What is track reconstruction ?
‣ Track reconstruction is finding sets of measurements coming from one

charged particle and building the associated trajectory through the detector.
Tracks are generally used as input to higher level reconstruction objects.
- set of measurements from charged particles

Part 1 - basics & principle of tracking and tracking detectors
 - interaction of particles with (sensitive or not sensitive) detector material

- finding associated measurements
Part 2 - track finding strategies, global and local pattern recognition algorithms

- trajectory estimation & track cleaning
 - track fitting, fake and efficiency estimation
 - adaptive, multi-variant and specialised methods

- tracks as input to higher level reconstruction and analysis
Part 3 - primary and secondary vertex reconstruction
		 - analysis usage
	 - the reality

2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Part I - Basics & Tracking Detectors

ATLAS ID upgrade concept, https://inspirehep.net/record/1085976/files/itk_230.png

https://inspirehep.net/record/1085976/files/itk_230.png

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Boring - Definitions
‣ Let’s get them out of the way …

- coordinate systems are right-handed
global : (x,y,z)
local: (lx,ly,lz)

- ϕ measured in transverse plane in [-π,+π) 
(azimuthal angle)

- θ is measured from z axis in [0,π] 
(polar angle)

- λ = π/2 - θ

- η = - ln [tan (θ/2)] is the pseudo-rapidity (rapidity of a massless particle)

x

y

z
θϕ

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Boring - Definitions
‣ Let’s get them out of the way …

- coordinate systems are right-handed
global : (x,y,z)
local: (lx,ly,lz)

- ϕ measured in transverse plane in [-π,+π) 
(azimuthal angle)

- θ is measured from z axis in [0,π] 
(polar angle)

- λ = π/2 - θ

- η = - ln [tan (θ/2)] is the pseudo-rapidity (rapidity of a massless particle)

x

y

z
θϕ

= Andreas

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Track parameterisation
‣ When bound to a surface, a trajectory of a charged particle needs in a

magnetic field five parameters to be defined

5

lx

ly

local position on surface
momentum
charge

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q = (l1, l2,�,�, q/p) (2)

The CDF choice:

q = (l1, l2,�, cot(✓), C) (3)

1

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Track parameterisation

6

x

y

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q = (l1, l2,�,�, q/p) (2)

The CDF choice:

q = (l1, l2,�, cot(✓), C) (3)

1

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q

0
= (l1, l2,�,�, q/p) (2)

The CDF choice:

q

00
= (l1, l2,�, cot(✓), C) (3)

1

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q

0
= (l1, l2,�,�, q/p) (2)

The CDF choice:

q

00
= (l1, l2,�, cot(✓), C) (3)

1

‣ there is a certain level of freedom in the actual parameterisation
- general feature:

2 local* parameters bound to the surface
3 global* parameters combining the momentum and charge

ATLAS

CMS

CDF

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Track parameterisation

6

x

y

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q = (l1, l2,�,�, q/p) (2)

The CDF choice:

q = (l1, l2,�, cot(✓), C) (3)

1

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q

0
= (l1, l2,�,�, q/p) (2)

The CDF choice:

q

00
= (l1, l2,�, cot(✓), C) (3)

1

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q

0
= (l1, l2,�,�, q/p) (2)

The CDF choice:

q

00
= (l1, l2,�, cot(✓), C) (3)

1

‣ there is a certain level of freedom in the actual parameterisation
- general feature:

2 local* parameters bound to the surface
3 global* parameters combining the momentum and charge

ATLAS

CMS

CDF

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :
q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :
q

0 = (l1, l2,�,�, q/p) (2)

The CDF choice:
q

00 = (l1, l2,�, cot(✓), C) (3)

The LHCb choice:
q

000 = (x, y, t
x

, t

y

, q/p) (4)

1

LHCb

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :
q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :
q

0 = (l1, l2,�,�, q/p) (2)

The CDF choice:
q

00 = (l1, l2,�, cot(✓), C) (3)

The LHCb choice:
q

000 = (x, y, t
x

, t

y

, q/p) (4)

with

t

x(y) =
@p

@x(y)
(5)

1

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Track parameterisation

6

x

y

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q = (l1, l2,�,�, q/p) (2)

The CDF choice:

q = (l1, l2,�, cot(✓), C) (3)

1

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q

0
= (l1, l2,�,�, q/p) (2)

The CDF choice:

q

00
= (l1, l2,�, cot(✓), C) (3)

1

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q

0
= (l1, l2,�,�, q/p) (2)

The CDF choice:

q

00
= (l1, l2,�, cot(✓), C) (3)

1

‣ there is a certain level of freedom in the actual parameterisation
- general feature:

2 local* parameters bound to the surface
3 global* parameters combining the momentum and charge

ATLAS

CMS

CDF

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :
q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :
q

0 = (l1, l2,�,�, q/p) (2)

The CDF choice:
q

00 = (l1, l2,�, cot(✓), C) (3)

The LHCb choice:
q

000 = (x, y, t
x

, t

y

, q/p) (4)

1

LHCb

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :
q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :
q

0 = (l1, l2,�,�, q/p) (2)

The CDF choice:
q

00 = (l1, l2,�, cot(✓), C) (3)

The LHCb choice:
q

000 = (x, y, t
x

, t

y

, q/p) (4)

with

t

x(y) =
@p

@x(y)
(5)

1

beam
beam

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Track parameterisation

6

x

y

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q = (l1, l2,�,�, q/p) (2)

The CDF choice:

q = (l1, l2,�, cot(✓), C) (3)

1

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q

0
= (l1, l2,�,�, q/p) (2)

The CDF choice:

q

00
= (l1, l2,�, cot(✓), C) (3)

1

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q

0
= (l1, l2,�,�, q/p) (2)

The CDF choice:

q

00
= (l1, l2,�, cot(✓), C) (3)

1

‣ there is a certain level of freedom in the actual parameterisation
- general feature:

2 local* parameters bound to the surface
3 global* parameters combining the momentum and charge

ATLAS

CMS

CDF

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :
q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :
q

0 = (l1, l2,�,�, q/p) (2)

The CDF choice:
q

00 = (l1, l2,�, cot(✓), C) (3)

The LHCb choice:
q

000 = (x, y, t
x

, t

y

, q/p) (4)

1

LHCb

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :
q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :
q

0 = (l1, l2,�,�, q/p) (2)

The CDF choice:
q

00 = (l1, l2,�, cot(✓), C) (3)

The LHCb choice:
q

000 = (x, y, t
x

, t

y

, q/p) (4)

with

t

x(y) =
@p

@x(y)
(5)

1

beam
beam

beam

beam

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Track parameterisation with uncertainties
‣ When bound to a surface, a trajectory of a charged particle needs in a

magnetic field five parameters (q) to be defined: track parameters

7

local position on surface
momentum
charge

lx

ly

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q = (l1, l2,�,�, q/p) (2)

The CDF choice:

q = (l1, l2,�, cot(✓), C) (3)

1

Formulas

A. Salzburger

July 30, 2014

Abstract
This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :
q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :
q

0 = (l1, l2,�,�, q/p) (2)

The CDF choice:
q

00 = (l1, l2,�, cot(✓), C) (3)

The LHCb choice:
q

000 = (x, y, t
x

, t

y

, q/p) (4)

with

t

x(y) =
@p

@x(y)
(5)

Covariances

C =

0

BBBB@

�

2(l1) cov(l1, l2) cov(l1,�) cov(l1, ✓) cov(l1, q/p)
. �

2(l2) cov(l2,�) cov(l2, ✓) cov(l2, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(6)

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

1

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4The special one: the Perigee
‣ Perigee representation

- parameterisation of closest approach to a reference line:
transverse (d0) and longitudinal (z0) impact parameter

8

zx

y

beam line

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

2

d0
z0

p

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4The special one: the Perigee with uncertainties
‣ Perigee representation

9

zx

y

beam line

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

2

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

2

d0
z0

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Part 1 - Tracking Detectors
‣ Track reconstruction in central tracking devices

- high granular detectors as close as possible to the beam-beam interaction region
usually hermetic detector design (although dependent on experimental setup)

- objective is to measure a precise localisation of the charged particle on a certain  
detection device, e.g.
- planar detectors, e.g.
 semiconductor based pixels, strip
- panar drift detector. e.g. micromegas
- drift tube detectors
- time projection chamber (TPC)

10

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Part 1 - Tracking Detectors
‣ Track reconstruction in central tracking devices

- high granular detectors as close as possible to the beam-beam interaction region
usually hermetic detector design (although dependent on experimental setup)

- objective is to measure a precise localisation of the charged particle on a certain  
detection device, e.g.
- planar detectors, e.g.
 semiconductor based pixels, strip
- panar drift detector. e.g. micromegas
- drift tube detectors
- time projection chamber (TPC)

10

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Semiconductor based detectors
‣ LHC innermost tracking devices are  

planar silicon detectors:
- exist as pixel and strip detectors  

(they need a local pattern recognition  
to find clusters of connected pixels/strip)

- ionisation of the silicon through  
charged particle  
(primary and secondary ionisation)

- drift of deposited charge to  
readout surface using an electric  
field (E)

- when embedded in magnetic field (B),  
drift deflection by Lorentz angle θL

11

250 µm

50 µm

charged
particle

θL

α

E

B

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Planar detectors: cluster finding

12

‣ LHC innermost tracking devices are planar silicon detectors:
- either pixel or strip technology with binary (on/off) or non-binary readout (e.g. charge

collected by time over readout threshold)

!
!
!

- more than one pixel/strip can be traversed by one particle: clustering needed 
usually performed with a connected component analysis (4-cell, 8-cell connectivity)

- example of connected component labelling with 8-cell connectivity:

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Planar detectors: cluster building
‣ multiple cells hit can be used  

to increase measurement 
precision

13

charge collected below threshold

true cluster  
position s

track

track

θL

x

z

x

y

z A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Planar detectors: cluster building
‣ multiple cells hit can be used  

to increase measurement 
precision

13

charge collected below threshold

true cluster  
position s

track

track

θL

x

z

x

y

z A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Planar detectors: cluster building
‣ multiple cells hit can be used  

to increase measurement 
precision

13

charge collected below threshold

true cluster  
position s

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position

m =
1

N

X

i=1,N

l

i

(9)

2

the binary approach: i-th pixel position
measurement

track

track

θL

x

z

x

y

z A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Planar detectors: cluster building
‣ multiple cells hit can be used  

to increase measurement 
precision

13

charge collected below threshold

true cluster  
position s

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position

m =
1

N

X

i=1,N

l

i

(9)

2

the binary approach: i-th pixel position
measurement

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

2

the charge-weighted approach :

charge collected in cell i

track

track

θL

x

z

x

y

z A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Planar detectors: cluster building
‣ multiple cells hit can be used  

to increase measurement 
precision

13

charge collected below threshold

true cluster  
position s

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position

m =
1

N

X

i=1,N

l

i

(9)

2

the binary approach: i-th pixel position
measurement

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

2

the charge-weighted approach :

charge collected in cell i

which one is better ?
!
let’s measure it using the residuum

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

track

track

θL

x

z

x

y

z A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering

tails from single pixel clusters

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what can we say about the uncertainty of the measurement ?

pitch size a

binary case, single pixel cluster

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what can we say about the uncertainty of the measurement ?

pitch size a

binary case, single pixel cluster

most lucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

= 0

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what can we say about the uncertainty of the measurement ?

pitch size a

binary case, single pixel cluster

most unlucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

= a/2

most lucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

= 0

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what can we say about the uncertainty of the measurement ?

pitch size a

binary case, single pixel cluster

most unlucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

= a/2

-a/2 +a/2

most lucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

= 0

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what can we say about the uncertainty of the measurement ?

pitch size a

binary case, 2-pixel cluster

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what can we say about the uncertainty of the measurement ?

pitch size a

binary case, 2-pixel cluster

most lucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

= 0

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what can we say about the uncertainty of the measurement ?

pitch size a

binary case, 2-pixel cluster

most unlucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

~ a/2

most lucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

= 0

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what can we say about the uncertainty of the measurement ?

pitch size a

binary case, 2-pixel cluster

-a/2 +a/2

most unlucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

~ a/2

most lucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

= 0

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what can we say about the uncertainty of the measurement ?

pitch size a

binary case, n-pixel cluster

-a/2 +a/2

most unlucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

~ a/2

most lucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

= 0

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what can we say about the uncertainty of the measurement ?

pitch size a

binary case, n-pixel cluster

-a/2 +a/2

most unlucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

~ a/2

most lucky cases:

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

= 0

usually, a minimum path length  
is required to deposit enough charge,
turns the biggest error into < a/2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what’s the variance of a uniform distribution between -a/2 and a/2 ?

-a/2 +a/2

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what’s the variance of a uniform distribution between -a/2 and a/2 ?

-a/2 +a/2

<r> = a2/12 σ = a/√12

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what’s the variance of a uniform distribution between -a/2 and a/2 ?

-a/2 +a/2

<r> = a2/12 σ = a/√12

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 5000, pullBinary = True)
[>>] mu = 0.00814352769061 | sigma = 0.70764581917

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

/σ()p A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: pixel clustering
‣ what’s the variance of a uniform distribution between -a/2 and a/2 ?

-a/2 +a/2

<r> = a2/12 σ = a/√12

salzburg$ ipython -i --matplotlib=osx PixelClustering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 5000, pullBinary = True)
[>>] mu = 0.00814352769061 | sigma = 0.70764581917

Pergiee
q = (d0, z0,�, ✓, q/p) (7)

C =

0

BBBB@

�

2(d0) cov(d0, z0) cov(d0,�) cov(d0, ✓) cov(d0, q/p)
. �

2(z0) cov(z0,�) cov(z0, ✓) cov(z0, q/p)
. . �

2(�) cov(�, ✓) cov(�, q/p)
. . . �

2(✓) cov(✓, q/p)
. . . . �

2(q/p)

1

CCCCA
(8)

Cluster position (binary)

m =
1

N

X

i=1,N

l

i

(9)

Cluster position (charge weighted)

m =
1P

i=1,N q

i

X

i=1,N

q

i

l

i

(10)

Residuum
r = m� s (11)

2

/σ()ppull distribution : A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4A classic planar detector design
‣ Planar modules arranged in cylinders & discs

- highest granularity in innermost layers

- barrel structure around the interaction region

- end-cap disk structure at higher pseudo rapidity

- overlap of modules to guarantee hermetic coverage
(e.g. overlaps in ϕ, and along z in general)
!

- stereo angle technique for strip  
detectors
	(two- or double sided modules) 

19

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Drift tube detectors
‣ Gas-filled tubes with a central wire

- inoisation of gas by traversing charged  
particle

- charge drift to wire through electric field (E),  
in case of embedding in magnetic field also 
some Lorentz force drift effects

- measurement is a drift time measurement

21

anode

cathode

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Drift tube detectors
‣ Gas-filled tubes with a central wire

- inoisation of gas by traversing charged  
particle

- charge drift to wire through electric field (E),  
in case of embedding in magnetic field also 
some Lorentz force drift effects

- measurement is a drift time measurement

21

charged particle

anode

cathodeionised
electrons drifting
to wire

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Drift tube detectors
‣ Gas-filled tubes with a central wire

- inoisation of gas by traversing charged  
particle

- charge drift to wire through electric field (E),  
in case of embedding in magnetic field also 
some Lorentz force drift effects

- measurement is a drift time measurement

21

charged particle

anode

cathodeionised
electrons drifting
to wire

drift radius

measurement

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Drift tube detectors
‣ Gas-filled tubes with a central wire

- inoisation of gas by traversing charged  
particle

- charge drift to wire through electric field (E),  
in case of embedding in magnetic field also 
some Lorentz force drift effects

- measurement is a drift time measurement

21

charged particle

anode

cathodeionised
electrons drifting
to wire

drift radius

measurement

E
kathode tube

anode wire

‣ Track reconstruction with  
drift measurements
- drift time converted into drift radius

- remaining left-right ambiguity that needs to be resolved 
usually done in the pattern recognition when already having some idea about the track direction

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Drift tube detectors
‣ ATLAS Transition Radiation Tracker

- used to do particle identification (PID)

- needs a dedicated detector design:
material with rapidly changing dielectric 
constant 
-> transition radiation creates additional 
 ionisation, e.g. higher signal
-> transition radiation is strongly 
 dependent on Lorentz factor

22

anode

cathode

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

ATLAS Testbeam results

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Drift tube detectors
‣ ATLAS Transition Radiation Tracker

- used to do particle identification (PID)

- needs a dedicated detector design:
material with rapidly changing dielectric 
constant 
-> transition radiation creates additional 
 ionisation, e.g. higher signal
-> transition radiation is strongly 
 dependent on Lorentz factor

22

charged particle

anode

cathode

ionised
electrons drifting
to wire

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

ATLAS Testbeam results

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Drift tube detectors
‣ ATLAS Transition Radiation Tracker

- used to do particle identification (PID)

- needs a dedicated detector design:
material with rapidly changing dielectric 
constant 
-> transition radiation creates additional 
 ionisation, e.g. higher signal
-> transition radiation is strongly 
 dependent on Lorentz factor

22

charged particle

anode

cathode

ionised
electrons drifting
to wire

drift radius

measurement

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

ATLAS Testbeam results

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Drift tube detectors
‣ ATLAS Transition Radiation Tracker

- used to do particle identification (PID)

- needs a dedicated detector design:
material with rapidly changing dielectric 
constant 
-> transition radiation creates additional 
 ionisation, e.g. higher signal
-> transition radiation is strongly 
 dependent on Lorentz factor

22

charged particle

anode

cathode

ionised
electrons drifting
to wire

drift radius

measurement

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

transition radiation

fiber or foil

ATLAS Testbeam results

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Drift tube detectors
‣ ATLAS Transition Radiation Tracker

- used to do particle identification (PID)

- needs a dedicated detector design:
material with rapidly changing dielectric 
constant 
-> transition radiation creates additional 
 ionisation, e.g. higher signal
-> transition radiation is strongly 
 dependent on Lorentz factor

22

charged particle

anode

cathode

ionised
electrons drifting
to wire

drift radius

measurement

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

transition radiation

fiber or foil

!
"
$

%&
'
('

)*
)+
,

!#-(.+&%

/)+#+�&01"2#$(%+

"34!"#$56478

$9:9;936<±9;999=

$7:9;993=±9;9999

$3:9;7=>±9;997

$>:#>;3??±9;99=

$<:9;389>±9;999=

!"#!$!"#$%&'&()#*

ATLAS Testbeam results

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Time projection chamber (TPC)
‣ TPCs allow to build huge tracking devices to relative moderate cost

- precise track reconstruction

25

a gas filled vessel (ionisable)

electric field for the charge drift

E

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Time projection chamber (TPC)
‣ TPCs allow to build huge tracking devices to relative moderate cost

- precise track reconstruction

25

a gas filled vessel (ionisable)

electric field for the charge drift

E

segmented readout chambers
(different technologies possible)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Time projection chamber (TPC)
‣ TPCs allow to build huge tracking devices to relative moderate cost

- precise track reconstruction

25

a gas filled vessel (ionisable)

electric field for the charge drift

E

segmented readout chambers
(different technologies possible)

track ionises the gas

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Time projection chamber (TPC)
‣ TPCs allow to build huge tracking devices to relative moderate cost

- precise track reconstruction

25

a gas filled vessel (ionisable)

electric field for the charge drift

E

segmented readout chambers
(different technologies possible)

track ionises the gas

charge drift to the readout chambers

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Time projection chamber (TPC)
‣ TPCs allow to build huge tracking devices to relative moderate cost

- precise track reconstruction

25

a gas filled vessel (ionisable)

electric field for the charge drift

E

segmented readout chambers
(different technologies possible)

track ionises the gas

charge drift to the readout chambers

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Time projection chamber (TPC)
‣ TPCs allow to build huge tracking devices to relative moderate cost

- precise track reconstruction

25

a gas filled vessel (ionisable)

electric field for the charge drift

E

segmented readout chambers
(different technologies possible)

track ionises the gas

charge drift to the readout chambers

measurements: 
(x,y) from readout segmentation  
(z) from drift time

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Enemy No. 1: material

28

‣ Unfortunately there a difference between how we’d like an ideal detector
to be and the reality

‣ Let’s face it: the reality is always more messy …
‣ General aim in the construction of tracking detectors:

- build them as light as possible
material interactions disturb the measurement in the tracker itself
tracker is usually before the calorimeter (material disturbs the calorimeter measurement)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

ideal real

Enemy No. 1: material

28

‣ Unfortunately there a difference between how we’d like an ideal detector
to be and the reality

‣ Let’s face it: the reality is always more messy …
‣ General aim in the construction of tracking detectors:

- build them as light as possible
material interactions disturb the measurement in the tracker itself
tracker is usually before the calorimeter (material disturbs the calorimeter measurement)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Multiple (Coulomb) scattering
‣ A charged particle undergoes random deflection  

- mainly caused by multiple (Coulomb) scattering off the core of atoms 
- additional component from single large (Rutherford) scattering

29

θ
space

θ
proj

initial direction

direction after scattering

18

engine, however, has been designed to stick to a generic detector model such that no information about
the underlying detector specifications can be accessed, while still keeping the maximum performance
level. This requirement has been met by defining the corrections as actions known to the Layer and
TrackingVolume that are able to return a pathCorrection() or bendingCorrection(), respectively,
depending on the actual input parameters of the track.

4.1.3 Multiple Scattering: the MultipleScatteringUpdator AlgTool

A particle that traverses detector material undergoes successive small angle deflections, caused by
multiple (Coulomb) scattering. Given the central limit theorem it can be assumed that the sum of
these small variations is Gaussian distributed and symmetrically centered around zero. However, large
angle single scattering processes disturb the purely Gaussian probability density function (PDF) and
add large non-Gaussian tails. As a rule of thumb, the assumption of the Gaussian character of the
underlying PDF is valid to about 98%, being limited to the core region of the distribution.
The integration of multiple scattering e↵ects is handled by a dedicated AlgTool, the so-called Multiple-
ScatteringUpdator. The calculation is done using the well known Highland formula [13], which is an
empirical adoption of Molière’s solution of the transport equation starting from the classical Ruther-
ford cross section of a single scattering process [14].
Highland expanded the original expression given by Molière for the root mean square �proj

ms

of the
projected scattering angle ✓proj with an empirical logarithmic correction term to adopt for the slightly
underestimated screening of the nucleus Coulomb potential in materials with lower Z. Furthermore,
he transformed — for convenience — the result into a function of the pathlength t in terms of the
radiation length X0 which leads to the well-known expression10

�proj

ms

=
13.6 MeV

�cp
Z

p
t/X0 [1 + 0.038 ln (t/X0)], (10)

when Z and p describe the charge and momentum of the incident particle, respectively.

Projection Correction and lateral Displacement In the ATLAS track parameterisation the momen-
tum direction is expressed through the globally defined polar angle ✓ and the azimuthal angle �, see
Eq. 1. Since ✓ already represents a projected angle with respect to the z axis, �proj

ms

can be directly
applied to the corresponding covariance term, while for the azimuthal angle a correction term of 1

sin ✓

has to be applied to the root mean square to account for the out of plane projection.
Another aspect of multiple scattering is that, in general, there exists a correlation between the actual
deflection in space ✓space and the local coordinates after the scattering process. The local displacement
due to scattering is hereby depending on the two projected scattering angles and the thickness of the
traversed material. In a Layer-based description of the reconstruction geometry, the layer thickness
is, however, only a model parameter and has little to do with the actual thickness traversed during
the multiple scattering process (in the following referred to as scattering thickness). In addition, the
Layer-based description intrinsically assumes that the material free regions in the according detector
volumes are big in comparison to a typical scattering thickness, and the local error on the successive
measurement surface is therefore mainly dominated by the directional uncertainties in � and ✓. The
displacement on the scattering surface caused by the multiple scattering process is therefore omitted
in this application. For the continuous integration of material e↵ects, on the other hand, the actual
path length s corresponds to the scattering thickness and it is included in the treatment of multiple
scattering [12].
Molière’s theory of multiple scattering is — when being applied in the small angle assumption —
not restricted to a specific particle type nor spin. It is based on the assumption that the deflection
of the scattered particle does not change the magnitude of the particle’s momentum, or, in other
words, it is a pure elastic single scattering theory. Rossi and Greisen [15], however, showed that for
electrons that traverse a significant amount of material this assumption is not valid anymore since the
electron momentum changes substantially due to radiation loss, which is described in more detail in
Sec. 4.1.4. This leads to a modification of the momentum dependency from 1/p2 to 1/(p

i

p
f

), when
10The multiple scattering process itself has little to do with the radiation length X0 other that both show the same

dependency on the atomic number Z and the molecular weight A of the material.

t

MC Toy: multiple scattering

salzburg$ ipython -i --matplotlib=osx MultipleScattering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: multiple scattering

salzburg$ ipython -i --matplotlib=osx MultipleScattering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: multiple scattering

salzburg$ ipython -i --matplotlib=osx MultipleScattering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: multiple scattering

salzburg$ ipython -i --matplotlib=osx MultipleScattering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: multiple scattering

salzburg$ ipython -i --matplotlib=osx MultipleScattering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: multiple scattering

salzburg$ ipython -i --matplotlib=osx MultipleScattering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: multiple scattering

salzburg$ ipython -i --matplotlib=osx MultipleScattering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

gaussian distribution,
predicted by central limit theorem

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: multiple scattering

salzburg$ ipython -i --matplotlib=osx MultipleScattering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 1000)

in the presence of multiple coulomb scattering and single large Rutherford scattering

non-gaussian tails

salzburg$ ipython -i --matplotlib=osx MultipleScattering.py
!
In [1]: fig, plots = buildPixels()
!
In [2]: shoot(fig, plots, 5000, sfraction = 0.01)

gaussian distribution,
predicted by central limit theorem

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

‣ charged particle loses energy when traversing material
- ionisation loss : Bethe-Bloch

!
!
!
!
!
!

- bremsstrahlung: Bethe-Heitler

20

The model parameters ✏, �
core

and �
tail

are hereby depending on the traversed material thickness in
terms of the radiation length X0 and are taken from [16]. Recently [17] even more precise models of
the multiple scattering descriptions have been developed that expand the double Gaussian mixture
model with a non-Gaussian tail descriptiond. The current ATLAS extrapolation engine has stuck
to the Gaussian mixture since it shows satisfactory agreement with the full Geant4 simulation while
being lightweight and convenient. A future inclusion of more sophisticated models will however be
easily possible by yet another implementation of the IMaterialEffectsUpdator interface13.
Figure 10 shows both the Highland formula application and the Gaussian mixture model as imple-
mented in the MaterialEffectsUpdator in comparison with data from a Monte Carlo simulation
using the well known and validated Geant4 [18] simulation toolkit. It also illustrates the main defini-
tions used in the calculation of the projected scattering angle.

4.1.4 Energy Loss: the EnergyLossUpdator AlgTool

Energy loss of particles traversing detector material occurs due to electromagnetic e↵ects - mainly
ionisation (in the order of ↵2), bremsstrahlung (order of ↵3), direct pair production (order of ↵4)
and photonuclear interactions; ↵ denotes the fine-structure constant with ↵ ' 1/137. The PDF ⇢(�)
(often referred to as straggling function) of the energy loss � is highly non-Gaussian, but for the use
in most track fitting applications an approximation to a Gaussian distribution has to be done.
For heavy particles with masses above 100 MeV peripheric collisions with the detector material — also
called ionisation loss — dominate the overall energy loss process. The probability for hard collisions
with the nuclei of the detector material is suppressed by the factor 1

m

2 and can therefore be neglected
for heavy particles. The electron mass, however, is about 200 times smaller than the mass of the next
heavier stable particle and hence interactions with the strong electromagnetic field of the nuclei that
cause bremsstrahlung have to be considered. Above a certain energy threshold, bremsstrahlung starts
to dominate the energy loss distribution for electrons.
The ATLAS EnergyLossUpdator AlgTool performs the energy loss calculation during the track ex-
trapolation process, which depends on the provided ParticleHypothesis, the material properties
and the kinematic parameters of the particle. The applied corrections are described in the following
paragraphs.

Energy Loss of heavy Particles The energy loss � of heavy particles in the energy range of final
state particles originating from high energy collision experiments is dominated almost entirely by
ionisation loss. Although this is a stochastic process that follows a PDF ⇢(�), it is justified to treat
it as a deterministic mean or averaged energy loss and a relatively small variance. This is, because �
is usually small in comparison to the particle momentum.
The mean energy loss of a heavy particle per unit length x due to ionisation loss is described by the
well known Bethe-Bloch formula [19]

dE

dx
= ↵22⇡N

a

�2
e

Zm
e

A�2


ln

2m
e

�2�2E0
m

I2(Z)
� 2�2 + 1/4

E02
m

E2
� �

�
, (13)

where

N
a

= 6.023 · 1023, Avogadro’s number
Z, A atomic number and weight of the traversed medium

m, m
e

rest masses of the particle and the electron
� = p/E, where p is the particle momentum
� = E/m

�
e

= 3.8616 · 10�11 cm is the Compton wavelength of the electron
I(Z) the mean ionisation potential of the medium,
E0

m

the maximum energy transferable to the electrons of the medium with

E0
m

= 2m
e

p2

m2
e

+ m2 + 2m
e

p
p2 + m2

� density correction.
13It is worth mentioning that this is one of the biggest benefits of the component software model that has been

deployed in the ATLAS track reconstruction.

Energy loss

31

primary ionisation +
secondary ionisation

≈ 3 x primary ionisation

23

where c = t/ ln 2 and z is evidently restricted to z 2 (0, 1).
The average mean (radiative) energy loss per unit length is then given as15

(dE/dx)
rad

= �E
i

/X0 (18)

From Eq. (18) one can learn that the expectation value for z is < z >= e�t and the variance can
be approximated by var < z >= e�t ln 3/ ln 2 � e�2t, which propagates a noise addition of �2

q/p

to the
covariance matrix of the ATLAS track parameter q/p as

�2
q/p

=
1

< z >2 p2
· var < z >, (19)

when this kind of update is applied.
The standard track parameterisation used in the ATLAS tracking EDM is defined such that the
uncertainties of the track are implicitly assumed to be Gaussian distributed, and it can be shown
that the application of the average energy loss described by the Bethe-Heitler formula (including the
Gaussian noise addition to the track uncertainties) introduces a strong bias towards too low momentum
reconstruction [25]. Figure 13 shows a comparison of the energy loss distributions of a heavy particle
(µ) to an electron when traversing the same detector layer.

10 2

-510

-410

-310

-210

-110

10
-Δ [MeV]

μ (with Landau fit)
e

Geant4

Figure 13: Comparison of muon energy loss to electron energy loss in a silicon layer of 10% X0 thickness.
The particles have been generated using Geant4 and where propagated with a initial momentum of 2 GeV . The
muon energy loss distribution follows hereby the Landau distribution, while the electron energy loss distribution
is disturbed by the long tail due to radiation loss. This results in a theoretical mean value up to 10 times
bigger than for pure ionisation loss.

4.2 Summary of the Material E↵ects Integration

The ATLAS extrapolation engine enhances di↵erent material update mechanisms that have been
described within this section. Some of the described options are dedicated to the fast track simulation
FATRAS. Table 1 gives — for the convenience of the reader — a summary of the implemented
techniques and indicates the configuration flags to be chosen for the various applications. The property
flags refer to the MultipleScatteringUpdator and EnergyLossUpdator, respectively.
The width of the Gaussian approximations to the energy loss functions can be adjusted by specifying
one additional property of EnergyLossUpdator.

15Note that Eq. (18) led to the definition of X0 through X0
�1 ⇡ 4↵r2

e

Z(Z + 1)N · E
i

(ln 183Z�1/3 + 1/18), when
N = ⇢N

a

/A is the number of atoms per unit area and r
e

the classical radius of the electron.

20

The model parameters ✏, �
core

and �
tail

are hereby depending on the traversed material thickness in
terms of the radiation length X0 and are taken from [16]. Recently [17] even more precise models of
the multiple scattering descriptions have been developed that expand the double Gaussian mixture
model with a non-Gaussian tail descriptiond. The current ATLAS extrapolation engine has stuck
to the Gaussian mixture since it shows satisfactory agreement with the full Geant4 simulation while
being lightweight and convenient. A future inclusion of more sophisticated models will however be
easily possible by yet another implementation of the IMaterialEffectsUpdator interface13.
Figure 10 shows both the Highland formula application and the Gaussian mixture model as imple-
mented in the MaterialEffectsUpdator in comparison with data from a Monte Carlo simulation
using the well known and validated Geant4 [18] simulation toolkit. It also illustrates the main defini-
tions used in the calculation of the projected scattering angle.

4.1.4 Energy Loss: the EnergyLossUpdator AlgTool

Energy loss of particles traversing detector material occurs due to electromagnetic e↵ects - mainly
ionisation (in the order of ↵2), bremsstrahlung (order of ↵3), direct pair production (order of ↵4)
and photonuclear interactions; ↵ denotes the fine-structure constant with ↵ ' 1/137. The PDF ⇢(�)
(often referred to as straggling function) of the energy loss � is highly non-Gaussian, but for the use
in most track fitting applications an approximation to a Gaussian distribution has to be done.
For heavy particles with masses above 100 MeV peripheric collisions with the detector material — also
called ionisation loss — dominate the overall energy loss process. The probability for hard collisions
with the nuclei of the detector material is suppressed by the factor 1

m

2 and can therefore be neglected
for heavy particles. The electron mass, however, is about 200 times smaller than the mass of the next
heavier stable particle and hence interactions with the strong electromagnetic field of the nuclei that
cause bremsstrahlung have to be considered. Above a certain energy threshold, bremsstrahlung starts
to dominate the energy loss distribution for electrons.
The ATLAS EnergyLossUpdator AlgTool performs the energy loss calculation during the track ex-
trapolation process, which depends on the provided ParticleHypothesis, the material properties
and the kinematic parameters of the particle. The applied corrections are described in the following
paragraphs.

Energy Loss of heavy Particles The energy loss � of heavy particles in the energy range of final
state particles originating from high energy collision experiments is dominated almost entirely by
ionisation loss. Although this is a stochastic process that follows a PDF ⇢(�), it is justified to treat
it as a deterministic mean or averaged energy loss and a relatively small variance. This is, because �
is usually small in comparison to the particle momentum.
The mean energy loss of a heavy particle per unit length x due to ionisation loss is described by the
well known Bethe-Bloch formula [19]

dE

dx
= ↵22⇡N

a

�2
e

Zm
e

A�2


ln

2m
e

�2�2E0
m

I2(Z)
� 2�2 + 1/4

E02
m

E2
� �

�
, (13)

where

N
a

= 6.023 · 1023, Avogadro’s number
Z, A atomic number and weight of the traversed medium

m, m
e

rest masses of the particle and the electron
� = p/E, where p is the particle momentum
� = E/m

�
e

= 3.8616 · 10�11 cm is the Compton wavelength of the electron
I(Z) the mean ionisation potential of the medium,
E0

m

the maximum energy transferable to the electrons of the medium with

E0
m

= 2m
e

p2

m2
e

+ m2 + 2m
e

p
p2 + m2

� density correction.
13It is worth mentioning that this is one of the biggest benefits of the component software model that has been

deployed in the ATLAS track reconstruction.

23

where c = t/ ln 2 and z is evidently restricted to z 2 (0, 1).
The average mean (radiative) energy loss per unit length is then given as15

(dE/dx)
rad

= �E
i

/X0 (18)

From Eq. (18) one can learn that the expectation value for z is < z >= e�t and the variance can
be approximated by var < z >= e�t ln 3/ ln 2 � e�2t, which propagates a noise addition of �2

q/p

to the
covariance matrix of the ATLAS track parameter q/p as

�2
q/p

=
1

< z >2 p2
· var < z >, (19)

when this kind of update is applied.
The standard track parameterisation used in the ATLAS tracking EDM is defined such that the
uncertainties of the track are implicitly assumed to be Gaussian distributed, and it can be shown
that the application of the average energy loss described by the Bethe-Heitler formula (including the
Gaussian noise addition to the track uncertainties) introduces a strong bias towards too low momentum
reconstruction [25]. Figure 13 shows a comparison of the energy loss distributions of a heavy particle
(µ) to an electron when traversing the same detector layer.

10 2

-510

-410

-310

-210

-110

10
-Δ [MeV]

μ (with Landau fit)
e

Geant4

Figure 13: Comparison of muon energy loss to electron energy loss in a silicon layer of 10% X0 thickness.
The particles have been generated using Geant4 and where propagated with a initial momentum of 2 GeV . The
muon energy loss distribution follows hereby the Landau distribution, while the electron energy loss distribution
is disturbed by the long tail due to radiation loss. This results in a theoretical mean value up to 10 times
bigger than for pure ionisation loss.

4.2 Summary of the Material E↵ects Integration

The ATLAS extrapolation engine enhances di↵erent material update mechanisms that have been
described within this section. Some of the described options are dedicated to the fast track simulation
FATRAS. Table 1 gives — for the convenience of the reader — a summary of the implemented
techniques and indicates the configuration flags to be chosen for the various applications. The property
flags refer to the MultipleScatteringUpdator and EnergyLossUpdator, respectively.
The width of the Gaussian approximations to the energy loss functions can be adjusted by specifying
one additional property of EnergyLossUpdator.

15Note that Eq. (18) led to the definition of X0 through X0
�1 ⇡ 4↵r2

e

Z(Z + 1)N · E
i

(ln 183Z�1/3 + 1/18), when
N = ⇢N

a

/A is the number of atoms per unit area and r
e

the classical radius of the electron.

ion

!"#

!"#$%&' (")* +

$%&'(()*++,-.+/-&'/0'12'(3 ,-.-+./--0

!"#$%& '()) *& +$#,))-$./'0"%
12*344'2"56&#) 7#8'5*89%&6%3:8;7*6$8%;8'5*8#&<6*78%;8'5*8
":4%2:*283"'*27"6

=;;*<'8%#6>82*6*?"#'8;%28*@ "#$8&6'2"A2*6"'7?74'7<8� BC,---8D*EF

;%28*6*<'2%#4G

!

!

!

!

"

!
!

#
$

$%#&'
(
$(

!
"

#
"

!$
%&

'
#(

)*
)"

' �

�

�

�

	
��

��
�

#
$

#
$

$%#&'(

$%#&'(

!!
"

"

!
!

#
+#(

',

,
"

)*
)"

#
"+

'
#(

)*
)"

%'

%'

�

�

�

��

��

2"$7"'7%#86*#)'58H).<3/I

JKL
*A

")
"

,*%"" ��

12-#$34.)).%#3(23("#3$.56.-6("3'#"%-/36"3,.-#$6.'3-/#3,#."3#"#$%&33(23."3#'#7-$("3*#.,36)3$#507#53*&3
.32.7-($3#338-(39:;3(23-/#36"765#"-3#"#$%&<3=

>=?=>>=?=>

$%&'(()*++,-.+/-&'/0'12'(3 ,-.-+./--0

@$6-67.'3!"#$%&

-./01230./$4+%!1$ "
)*
)""

)*
)" *+*+ �

!(,$
-$")

�
�
#
5%6" 70890)1.70)

$

!(,$
.$"
�

�
#
5%6" :21

$!""#$%&'!(&$)*+

,-.)*&(/0.11.2(3

2#&(&2!40.).#5/062

7$)&*!(&$)0.).#5/04$**0$10.4.2(#$)!
890'$-&1&2!(&$)0$10::
#.2$&4 ;'!%<;&)=>
&)-&*(&)5?&*@!A4.0"!#(&24.*0,BC3

+2)0230./$.77010./3.3)*
)"

)*
)"

)*
)"

�
�

�
	�

�
�

�
	�

�
�

�
	

>=?=>>=?=>

dE

dx

=
E

X0
X0 =

A

4�NA Z2r2
e ln 183

Z
1
3

dE

dx
= 4�NA

Z2

A
r2
e · E ln

183
Z

1
3 E = E0e

�x/X0

Bremsstrahlung

Bremsstrahlung arises if particles
are accelerated in Coulomb field of nucleus

dE

dx
= 4�NA

z2Z2

A

✓
1

4⇤⇥0

e2

mc2

◆2

E ln
183
Z

1
3
/ E

m2

i.e. energy loss proportional to 1/m2 ➙ main relevance for electrons ...

... or ultra-relativistic muons

Consider electrons:

with

[Radiation length in g/cm2]

After passage of one X0 electron has
lost all but (1/e)th of its energy

[i.e. 63%]

23

where c = t/ ln 2 and z is evidently restricted to z 2 (0, 1).
The average mean (radiative) energy loss per unit length is then given as15

(dE/dx)
rad

= �E
i

/X0 (18)

From Eq. (18) one can learn that the expectation value for z is < z >= e�t and the variance can
be approximated by var < z >= e�t ln 3/ ln 2 � e�2t, which propagates a noise addition of �2

q/p

to the
covariance matrix of the ATLAS track parameter q/p as

�2
q/p

=
1

< z >2 p2
· var < z >, (19)

when this kind of update is applied.
The standard track parameterisation used in the ATLAS tracking EDM is defined such that the
uncertainties of the track are implicitly assumed to be Gaussian distributed, and it can be shown
that the application of the average energy loss described by the Bethe-Heitler formula (including the
Gaussian noise addition to the track uncertainties) introduces a strong bias towards too low momentum
reconstruction [25]. Figure 13 shows a comparison of the energy loss distributions of a heavy particle
(µ) to an electron when traversing the same detector layer.

10 2

-510

-410

-310

-210

-110

10
-Δ [MeV]

μ (with Landau fit)
e

Geant4

Figure 13: Comparison of muon energy loss to electron energy loss in a silicon layer of 10% X0 thickness.
The particles have been generated using Geant4 and where propagated with a initial momentum of 2 GeV . The
muon energy loss distribution follows hereby the Landau distribution, while the electron energy loss distribution
is disturbed by the long tail due to radiation loss. This results in a theoretical mean value up to 10 times
bigger than for pure ionisation loss.

4.2 Summary of the Material E↵ects Integration

The ATLAS extrapolation engine enhances di↵erent material update mechanisms that have been
described within this section. Some of the described options are dedicated to the fast track simulation
FATRAS. Table 1 gives — for the convenience of the reader — a summary of the implemented
techniques and indicates the configuration flags to be chosen for the various applications. The property
flags refer to the MultipleScatteringUpdator and EnergyLossUpdator, respectively.
The width of the Gaussian approximations to the energy loss functions can be adjusted by specifying
one additional property of EnergyLossUpdator.

15Note that Eq. (18) led to the definition of X0 through X0
�1 ⇡ 4↵r2

e

Z(Z + 1)N · E
i

(ln 183Z�1/3 + 1/18), when
N = ⇢N

a

/A is the number of atoms per unit area and r
e

the classical radius of the electron.

!"#

!"#$%&' (")* +

$%&'(()*++,-.+/-&'/0'12'(3 ,-.-+./--0

!"#$%& '()) *& +$#,))-$./'0"%
12*344'2"56&#) 7#8'5*89%&6%3:8;7*6$8%;8'5*8#&<6*78%;8'5*8
":4%2:*283"'*27"6

=;;*<'8%#6>82*6*?"#'8;%28*@ "#$8&6'2"A2*6"'7?74'7<8� BC,---8D*EF

;%28*6*<'2%#4G

!

!

!

!

"

!
!

#
$

$%#&'
(
$(

!
"

#
"

!$
%&

'
#(

)*
)"

' �

�

�

�

	
��

��
�

#
$

#
$

$%#&'(

$%#&'(

!!
"

"

!
!

#
+#(

',

,
"

)*
)"

#
"+

'
#(

)*
)"

%'

%'

�

�

�

��

��

2"$7"'7%#86*#)'58H).<3/I

JKL
*A

")
"

,*%"" ��

12-#$34.)).%#3(23("#3$.56.-6("3'#"%-/36"3,.-#$6.'3-/#3,#."3#"#$%&33(23."3#'#7-$("3*#.,36)3$#507#53*&3
.32.7-($3#338-(39:;3(23-/#36"765#"-3#"#$%&<3=

>=?=>>=?=>

$%&'(()*++,-.+/-&'/0'12'(3 ,-.-+./--0

@$6-67.'3!"#$%&

-./01230./$4+%!1$ "
)*
)""

)*
)" *+*+ �

!(,$
-$")

�
�
#
5%6" 70890)1.70)

$

!(,$
.$"
�

�
#
5%6" :21

$!""#$%&'!(&$)*+

,-.)*&(/0.11.2(3

2#&(&2!40.).#5/062

7$)&*!(&$)0.).#5/04$**0$10.4.2(#$)!
890'$-&1&2!(&$)0$10::
#.2$&4 ;'!%<;&)=>
&)-&*(&)5?&*@!A4.0"!#(&24.*0,BC3

+2)0230./$.77010./3.3)*
)"

)*
)"

)*
)"

�
�

�
	�

�
�

�
	�

�
�

�
	

>=?=>>=?=>

dE

dx

=
E

X0
X0 =

A

4�NA Z2r2
e ln 183

Z
1
3

dE

dx
= 4�NA

Z2

A
r2
e · E ln

183
Z

1
3 E = E0e

�x/X0

Bremsstrahlung

Bremsstrahlung arises if particles
are accelerated in Coulomb field of nucleus

dE

dx
= 4�NA

z2Z2

A

✓
1

4⇤⇥0

e2

mc2

◆2

E ln
183
Z

1
3
/ E

m2

i.e. energy loss proportional to 1/m2 ➙ main relevance for electrons ...

... or ultra-relativistic muons

Consider electrons:

with

[Radiation length in g/cm2]

After passage of one X0 electron has
lost all but (1/e)th of its energy

[i.e. 63%]

radiation length

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Energy loss
‣ A charged particle loses energy when traversing material

- ionisation loss: Bethe-Heitler

!
!
!
!
!

- bremsstrahlung: Bethe-Bloch

32z

z = Efinal/Einiital

22

stochastic process that leads to asymmetric fluctuations around a most probable value (MPV). Landau
[23] described this distribution14 and showed that the most probable energy loss

L

�
p

can be expressed
as

L

�
p

= ⇠


ln

2mc2�2�2

I
+ ln

⇠

I
+ 0.2� �2 � �

�
, (14)

with ⇠ = ZN
a

k

�

2 t, when t denotes the thicknesss of the traversed material. It can be shown that in
the asymptotic behavior of � >> 1 (i.e. � ⇡ 1) the density correction � can be modeled as

� ⇡ 4.447� ln �2, (15)

which simplifies Eq. (14) to

L

�
p

= ⇠


ln

2mc2�2

I
+ ln

⇠

I
� 0.8 + 4.447

�
. (16)

Equation (16) is used in the standard EnergyLossUpdator AlgTool for the calculation of the most
probable energy loss of heavy particles. Figure 12 illustrates the energy loss distribution for a heavy
particle in a silicon layer and includes possible Gaussian approximations that are enhanced by the
ATLAS EnergyLossUpdator.

Geant4 (with Landau fit)

1 2 3 4 5 6

-310

-210

-110

-Δ [MeV]

2

1

3

1

2

3

2

1

3

μG = MPVL

σG = σL

σG = 2 σL

σG = 3 σL

2

1

3

μG = μL

σG = 2 σL

σG = 3 σL

σG = 4 σL

Figure 12: The energy loss distribution at standard measure for single muons with 5 GeV traversing 4.68

mm (i.e. 5% X0) of Silicon. The distribution has been created with the Geant4 toolkit and fitted with
a landau distribution. Di↵erent possible Gaussian approximations around the theoretical mean (µ

L

, dashed
curves) or respectively most probable value (MPV

L

, solid curves) that can be chosen for modeling the landau
distribution are shown. The shaded areas illustrate additional 10% of entries starting from 50% (non-filled
area).

Energy Loss of Electrons Electrons lose a substantial part of their energy due to bremsstrahlung,
but inonisation loss still remains a contribution to the total e↵ect. The ATLAS extrapolation package
is capable of correcting for both, mean ionisation loss and bremsstrahlung even if the ionisation loss
can be neglected in many cases. The description of the ionisation loss is slightly modified in the form
factors in comparison with the heavy particle case. Energy loss by bremsstrahlung is well described
by the theory of Bethe and Heitler [24]. Following a standard notation where z denotes the ratio of
the final energy E

f

to the initial energy E
i

and denoting the amount of material traversed by the
particle in terms of radiation length X0 as t, the PDF of z is given by

⇢(z) =
[� ln z]c�1

�(c)
, (17)

14Nowadays only known as Landau distribution.

23

where c = t/ ln 2 and z is evidently restricted to z 2 (0, 1).
The average mean (radiative) energy loss per unit length is then given as15

(dE/dx)
rad

= �E
i

/X0 (18)

From Eq. (18) one can learn that the expectation value for z is < z >= e�t and the variance can
be approximated by var < z >= e�t ln 3/ ln 2 � e�2t, which propagates a noise addition of �2

q/p

to the
covariance matrix of the ATLAS track parameter q/p as

�2
q/p

=
1

< z >2 p2
· var < z >, (19)

when this kind of update is applied.
The standard track parameterisation used in the ATLAS tracking EDM is defined such that the
uncertainties of the track are implicitly assumed to be Gaussian distributed, and it can be shown
that the application of the average energy loss described by the Bethe-Heitler formula (including the
Gaussian noise addition to the track uncertainties) introduces a strong bias towards too low momentum
reconstruction [25]. Figure 13 shows a comparison of the energy loss distributions of a heavy particle
(µ) to an electron when traversing the same detector layer.

10 2

-510

-410

-310

-210

-110

10
-Δ [MeV]

μ (with Landau fit)
e

Geant4

Figure 13: Comparison of muon energy loss to electron energy loss in a silicon layer of 10% X0 thickness.
The particles have been generated using Geant4 and where propagated with a initial momentum of 2 GeV . The
muon energy loss distribution follows hereby the Landau distribution, while the electron energy loss distribution
is disturbed by the long tail due to radiation loss. This results in a theoretical mean value up to 10 times
bigger than for pure ionisation loss.

4.2 Summary of the Material E↵ects Integration

The ATLAS extrapolation engine enhances di↵erent material update mechanisms that have been
described within this section. Some of the described options are dedicated to the fast track simulation
FATRAS. Table 1 gives — for the convenience of the reader — a summary of the implemented
techniques and indicates the configuration flags to be chosen for the various applications. The property
flags refer to the MultipleScatteringUpdator and EnergyLossUpdator, respectively.
The width of the Gaussian approximations to the energy loss functions can be adjusted by specifying
one additional property of EnergyLossUpdator.

15Note that Eq. (18) led to the definition of X0 through X0
�1 ⇡ 4↵r2

e

Z(Z + 1)N · E
i

(ln 183Z�1/3 + 1/18), when
N = ⇢N

a

/A is the number of atoms per unit area and r
e

the classical radius of the electron.

10 2

-510

-410

-310

-210

-110

10
-Δ [MeV]

μ (with Landau fit)
e

Geant4

Landau distribution with most probable value,
mean value and Landau tail
!
For Tracking detectors with rather little material:
𝛥E << E in

Very long tail with high probability to lose significant
fraction of the particle energy

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Hadronic interaction
‣ Hadrons can undergo nuclear interaction with the detector material

- leads usually to the destruction of the particle (as much as it concern us)

33

‣ Unfortunately most our charged particles are hadrons
- this is the main source of track reconstruction inefficiency  

(if you wrote you algorithms correctly)

- there are many different processes that 
can happen in hadron-nucleus interactions

- resulting shower has hadronic, but also EM  
shower components

- nuclear interaction length defined as the  
mean path length 𝛬0 by which the number of  
charged particles is traversing through matter  
is reduced by 1/e

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

Type particles fund. parameter characteristics effect

all charged
particle

radiation length
X

almost gaussian
average effect 0
depends ~ 1/p

deflects particles,
increases

measurement
uncertainty

all charged
particle

effective density
A/Z * 𝜌

small effect in
tracker, small

dependence on
p

increases
momentum
uncertainty

all charged
particle,  

dominant for e

radiation length
X

highly non-
gaussian,

depends

introduces
measurement

bias

all hadronic
particles

nuclear
interaction length

𝛬

destroys particle,
rather constant

effect in p

main source of
track

reconstruction
inefficiency

Summary - particle interaction with matter

34

Multiple Scattering

Ionisation loss

Bremsstrahlung

Hadronic Int.

SUMMARY

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Detector material
‣ general aim in the construction of tracking detectors:

- build them as light as possible
material interactions disturb the measurement in the tracker itself
tracker is usually before the calorimeter (material disturbs the calorimeter measurement)

- two fundamental measures: radiation length X0 and nuclear interaction length 𝛬0

35

MC Toy: detector material

salzburg$ ipython -i --matplotlib=osx DetectorMaterial.py
!
In [1]: fig, plots = buildFrame()
!
In [2]: buildDetector(fig, plots)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: detector material

salzburg$ ipython -i --matplotlib=osx DetectorMaterial.py
!
In [1]: fig, plots = buildFrame()
!
In [2]: buildDetector(fig, plots)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: detector material

salzburg$ ipython -i --matplotlib=osx DetectorMaterial.py
!
In [1]: fig, plots = buildFrame()
!
In [2]: buildDetector(fig, plots)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: detector material

salzburg$ ipython -i --matplotlib=osx DetectorMaterial.py
!
In [1]: fig, plots = buildFrame()
!
In [2]: buildDetector(fig, plots)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: detector material

salzburg$ ipython -i --matplotlib=osx DetectorMaterial.py
!
In [1]: fig, plots = buildFrame()
!
In [2]: buildDetector(fig, plots)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

MC Toy: detector material

salzburg$ ipython -i --matplotlib=osx DetectorMaterial.py
!
In [1]: fig, plots = buildFrame()
!
In [2]: buildDetector(fig, plots)

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4The magnetic field
‣ A magnetic field is essential to bend the charged particles in order to

measure their momenta
- in a perfect homogenous field : circle in transverse direction

- yields a helical track in a solenoidal field
keep transverse & longitudinal components independent

37

B

10

solved by templating the private propagation methods to the di↵erent surfaces by the actual charged
or neutral parameters type. The HelixPropagator simply uses the StraightLinePropagator for any
parameters transport of neutral parameters or in case of a no-field environment. The transport of the
neutral parameters classes is fully supported with ATLAS release 13.1.0.

2.3 Numerical propagation: the RungeKuttaPropagator and STEP Propagator

Most of the track parameter propagations to be performed in the ATLAS event reconstruction are
within a highly inhomogeneous magnetic field where a global track model can not be used for solv-
ing the transport equations. Hence, a fast numerical solution for calculating the intersection of the
trajectory with the destination surface is needed. In ATLAS this is realised by two implementa-
tions of the IPropagator interface, the RungeKuttaPropagator and STEP Propagator. Both rely on
a fourth order Runge-Kutta-Nystrøm formalism with an integrated adaptive step estimation. The
main di↵erence between the two realisations is that the STEP Propagator includes energy loss in the
equation of motion and applies corrections to the covariance matrices continuously during the param-
eter transport along the track. It is designed for the description of a particle that traverses a dense
block of material, while the RungeKuttaPropagator complies with the classical model of point-like
material update on detector layers that is carried out by dedicated AlgTool classes in the ATLAS
track extrapolation engine. Both IPropagator implementations perform the propagation in global
coordinates and use common Jacobian matrices for the transformations between the global frame
and local surface-attached coordinate systems5. The equation of motion of a charged particle with
momentum p and mass m through a magnetic field B(r) can be expressed in many di↵erent ways that
mostly di↵er through the parameterisation and choice of the free parameter. For collider experiments
a helix-based parameterisation along the arc length s is a good choice since it is not restricting nor
favoring any specific particle direction6. The equation of motion of a particle with charge q, defined
by the Lorentz force, can then — when omitting multiple scattering and energy loss e↵ects — be
written as the second order di↵erential equation

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
, (5)

and, when including an energy loss function g(p, r), as

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
+ g(p, r)

dr

ds
. (6)

Equation (5) and Eq. (6) are the fundamental transport equation used by the RungeKuttaPropagator
and STEP Propagator, respectively. The calculations are in both cases performed using the Runge-
Kutta-Nystrøm method, which is well suited to solve second order di↵erential equations. The basic
principle of the Runge-Kutta method can be found in may textbooks [9], an exhaustive review of
the used Runge-Kutta-Nystrøm method and the description of error matrix transport (carried out by
the Bugge-Myrheim method) for both propagators of the ATLAS track reconstruction is in addition
presented in [12].
Both the RungeKuttaPropagator and the STEP Propagator stop the numerical iteration when the
distance to the surface drops below a certain cut value. For the last step starting at the position r

f�1,
a simple Taylor expansion to second order is used:

r

final

= r

f�1 + h
dr

ds
|rf�1 +

1
2
h2 d2

r

ds2
|rf�1

, (7)

with h denoting the distance to the destination surface at the approach point f � 1.

Straight and Helical Track Model The RungeKuttaPropagator and STEP Propagator are clearly
the most flexible propagation techniques in the ATLAS track reconstruction software. It is inert to the
Runge-Kutta formalism that in case of a homogenous magnetic field setup, the propagation is carried

5The common data classes are located in the shared TrkExUtils package.
6In fix target experiments, however, a di↵erent choice representing the main particle direction may be taken.

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4The magnetic field
‣ A magnetic field is essential to bend the charged particles in order to

measure their momenta
- in a perfect homogenous field : circle in transverse direction

- yields a helical track in a solenoidal field
keep transverse & longitudinal components independent

37

B

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q = (l1, l2,�,�, q/p) (2)

The CDF choice:

q = (l1, l2,�, cot(✓), C) (3)

1

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q

0
= (l1, l2,�,�, q/p) (2)

The CDF choice:

q

00
= (l1, l2,�, cot(✓), C) (3)

1

Formulas

A. Salzburger

July 29, 2014

Abstract

This is the paper’s abstract . . .

1 Introduction

The ATLAS choice :

q = (l1, l2,�, ✓, q/p) (1)

The CMS choice :

q

0
= (l1, l2,�,�, q/p) (2)

The CDF choice:

q

00
= (l1, l2,�, cot(✓), C) (3)

1

ATLAS

CMS

CDF

10

solved by templating the private propagation methods to the di↵erent surfaces by the actual charged
or neutral parameters type. The HelixPropagator simply uses the StraightLinePropagator for any
parameters transport of neutral parameters or in case of a no-field environment. The transport of the
neutral parameters classes is fully supported with ATLAS release 13.1.0.

2.3 Numerical propagation: the RungeKuttaPropagator and STEP Propagator

Most of the track parameter propagations to be performed in the ATLAS event reconstruction are
within a highly inhomogeneous magnetic field where a global track model can not be used for solv-
ing the transport equations. Hence, a fast numerical solution for calculating the intersection of the
trajectory with the destination surface is needed. In ATLAS this is realised by two implementa-
tions of the IPropagator interface, the RungeKuttaPropagator and STEP Propagator. Both rely on
a fourth order Runge-Kutta-Nystrøm formalism with an integrated adaptive step estimation. The
main di↵erence between the two realisations is that the STEP Propagator includes energy loss in the
equation of motion and applies corrections to the covariance matrices continuously during the param-
eter transport along the track. It is designed for the description of a particle that traverses a dense
block of material, while the RungeKuttaPropagator complies with the classical model of point-like
material update on detector layers that is carried out by dedicated AlgTool classes in the ATLAS
track extrapolation engine. Both IPropagator implementations perform the propagation in global
coordinates and use common Jacobian matrices for the transformations between the global frame
and local surface-attached coordinate systems5. The equation of motion of a charged particle with
momentum p and mass m through a magnetic field B(r) can be expressed in many di↵erent ways that
mostly di↵er through the parameterisation and choice of the free parameter. For collider experiments
a helix-based parameterisation along the arc length s is a good choice since it is not restricting nor
favoring any specific particle direction6. The equation of motion of a particle with charge q, defined
by the Lorentz force, can then — when omitting multiple scattering and energy loss e↵ects — be
written as the second order di↵erential equation

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
, (5)

and, when including an energy loss function g(p, r), as

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
+ g(p, r)

dr

ds
. (6)

Equation (5) and Eq. (6) are the fundamental transport equation used by the RungeKuttaPropagator
and STEP Propagator, respectively. The calculations are in both cases performed using the Runge-
Kutta-Nystrøm method, which is well suited to solve second order di↵erential equations. The basic
principle of the Runge-Kutta method can be found in may textbooks [9], an exhaustive review of
the used Runge-Kutta-Nystrøm method and the description of error matrix transport (carried out by
the Bugge-Myrheim method) for both propagators of the ATLAS track reconstruction is in addition
presented in [12].
Both the RungeKuttaPropagator and the STEP Propagator stop the numerical iteration when the
distance to the surface drops below a certain cut value. For the last step starting at the position r

f�1,
a simple Taylor expansion to second order is used:

r

final

= r

f�1 + h
dr

ds
|rf�1 +

1
2
h2 d2

r

ds2
|rf�1

, (7)

with h denoting the distance to the destination surface at the approach point f � 1.

Straight and Helical Track Model The RungeKuttaPropagator and STEP Propagator are clearly
the most flexible propagation techniques in the ATLAS track reconstruction software. It is inert to the
Runge-Kutta formalism that in case of a homogenous magnetic field setup, the propagation is carried

5The common data classes are located in the shared TrkExUtils package.
6In fix target experiments, however, a di↵erent choice representing the main particle direction may be taken.

Realistic magnetic fields: CMS & ATLAS
these are not homogeneous magnetic fields !

6

0 500 1000 1500 2000 2500 3000 35000

200

400

600

800

1000

1200

1400

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-3 -2 -1 0 1 2 3

1.965

1.970

1.975

1.980

1.985

1.990

1.995

φ z [mm]

B
 [

T
]

B
 [

T
]

r
[m

m
]

r = 100 mm

r = 1100 mm

-110

1

0 2 4 6 8 10 12 14 16 18 20 22

-210

-210

B
 [

T
]

z [mm]

2

4

6

8

10

12

14

103

103

r
[m

m
]

Figure 4: The realistic magnetic field in the r � z plane for the entire ATLAS detector. The upper plot
shows the magnetic field strength in the r � z plane at an azimuthal angle of � = ⇡/8 which lies within one
Muon System toroid structure. The plots at the bottom focusses on the magnetic field of the Inner Detector
as described by the ATLAS-CSC-01-02-00 layout. The first plot at the bottom shows the �-dependency of
the magnetic field at di↵erent radii in steps of 100 millimeter at z = 0: the homogeneity of the field in the
ID is broken in radial and azimuthal direction even in the very central part of the solenoid. The second plot
shows the magnitude of the magnetic field shown within a quarter of the Inner Detector.

rameters and omits the transport of the associated covariances can be chosen. This is optimised
for situations where the transported error represented at the destination surface is not needed.

• The globalPositions() method is designed to fill a list with 3D points along the track in
intervals of a given step length and confined within a given volume. It is mainly performed
during the road building process of the pattern recognition stage.

• The validationAction() enables to call event- or track-based validation directives from outside
(e.g. such as parameter resetting or the filling of validation information into appropriate output

B

coil

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4

‣ problems to solve
- transport of track parameters through the magnetic field

!
!
!

- application of material effects according to the detector material

Track propagation

39

10

solved by templating the private propagation methods to the di↵erent surfaces by the actual charged
or neutral parameters type. The HelixPropagator simply uses the StraightLinePropagator for any
parameters transport of neutral parameters or in case of a no-field environment. The transport of the
neutral parameters classes is fully supported with ATLAS release 13.1.0.

2.3 Numerical propagation: the RungeKuttaPropagator and STEP Propagator

Most of the track parameter propagations to be performed in the ATLAS event reconstruction are
within a highly inhomogeneous magnetic field where a global track model can not be used for solv-
ing the transport equations. Hence, a fast numerical solution for calculating the intersection of the
trajectory with the destination surface is needed. In ATLAS this is realised by two implementa-
tions of the IPropagator interface, the RungeKuttaPropagator and STEP Propagator. Both rely on
a fourth order Runge-Kutta-Nystrøm formalism with an integrated adaptive step estimation. The
main di↵erence between the two realisations is that the STEP Propagator includes energy loss in the
equation of motion and applies corrections to the covariance matrices continuously during the param-
eter transport along the track. It is designed for the description of a particle that traverses a dense
block of material, while the RungeKuttaPropagator complies with the classical model of point-like
material update on detector layers that is carried out by dedicated AlgTool classes in the ATLAS
track extrapolation engine. Both IPropagator implementations perform the propagation in global
coordinates and use common Jacobian matrices for the transformations between the global frame
and local surface-attached coordinate systems5. The equation of motion of a charged particle with
momentum p and mass m through a magnetic field B(r) can be expressed in many di↵erent ways that
mostly di↵er through the parameterisation and choice of the free parameter. For collider experiments
a helix-based parameterisation along the arc length s is a good choice since it is not restricting nor
favoring any specific particle direction6. The equation of motion of a particle with charge q, defined
by the Lorentz force, can then — when omitting multiple scattering and energy loss e↵ects — be
written as the second order di↵erential equation

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
, (5)

and, when including an energy loss function g(p, r), as

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
+ g(p, r)

dr

ds
. (6)

Equation (5) and Eq. (6) are the fundamental transport equation used by the RungeKuttaPropagator
and STEP Propagator, respectively. The calculations are in both cases performed using the Runge-
Kutta-Nystrøm method, which is well suited to solve second order di↵erential equations. The basic
principle of the Runge-Kutta method can be found in may textbooks [9], an exhaustive review of
the used Runge-Kutta-Nystrøm method and the description of error matrix transport (carried out by
the Bugge-Myrheim method) for both propagators of the ATLAS track reconstruction is in addition
presented in [12].
Both the RungeKuttaPropagator and the STEP Propagator stop the numerical iteration when the
distance to the surface drops below a certain cut value. For the last step starting at the position r

f�1,
a simple Taylor expansion to second order is used:

r

final

= r

f�1 + h
dr

ds
|rf�1 +

1
2
h2 d2

r

ds2
|rf�1

, (7)

with h denoting the distance to the destination surface at the approach point f � 1.

Straight and Helical Track Model The RungeKuttaPropagator and STEP Propagator are clearly
the most flexible propagation techniques in the ATLAS track reconstruction software. It is inert to the
Runge-Kutta formalism that in case of a homogenous magnetic field setup, the propagation is carried

5The common data classes are located in the shared TrkExUtils package.
6In fix target experiments, however, a di↵erent choice representing the main particle direction may be taken.

10

solved by templating the private propagation methods to the di↵erent surfaces by the actual charged
or neutral parameters type. The HelixPropagator simply uses the StraightLinePropagator for any
parameters transport of neutral parameters or in case of a no-field environment. The transport of the
neutral parameters classes is fully supported with ATLAS release 13.1.0.

2.3 Numerical propagation: the RungeKuttaPropagator and STEP Propagator

Most of the track parameter propagations to be performed in the ATLAS event reconstruction are
within a highly inhomogeneous magnetic field where a global track model can not be used for solv-
ing the transport equations. Hence, a fast numerical solution for calculating the intersection of the
trajectory with the destination surface is needed. In ATLAS this is realised by two implementa-
tions of the IPropagator interface, the RungeKuttaPropagator and STEP Propagator. Both rely on
a fourth order Runge-Kutta-Nystrøm formalism with an integrated adaptive step estimation. The
main di↵erence between the two realisations is that the STEP Propagator includes energy loss in the
equation of motion and applies corrections to the covariance matrices continuously during the param-
eter transport along the track. It is designed for the description of a particle that traverses a dense
block of material, while the RungeKuttaPropagator complies with the classical model of point-like
material update on detector layers that is carried out by dedicated AlgTool classes in the ATLAS
track extrapolation engine. Both IPropagator implementations perform the propagation in global
coordinates and use common Jacobian matrices for the transformations between the global frame
and local surface-attached coordinate systems5. The equation of motion of a charged particle with
momentum p and mass m through a magnetic field B(r) can be expressed in many di↵erent ways that
mostly di↵er through the parameterisation and choice of the free parameter. For collider experiments
a helix-based parameterisation along the arc length s is a good choice since it is not restricting nor
favoring any specific particle direction6. The equation of motion of a particle with charge q, defined
by the Lorentz force, can then — when omitting multiple scattering and energy loss e↵ects — be
written as the second order di↵erential equation

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
, (5)

and, when including an energy loss function g(p, r), as

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
+ g(p, r)

dr

ds
. (6)

Equation (5) and Eq. (6) are the fundamental transport equation used by the RungeKuttaPropagator
and STEP Propagator, respectively. The calculations are in both cases performed using the Runge-
Kutta-Nystrøm method, which is well suited to solve second order di↵erential equations. The basic
principle of the Runge-Kutta method can be found in may textbooks [9], an exhaustive review of
the used Runge-Kutta-Nystrøm method and the description of error matrix transport (carried out by
the Bugge-Myrheim method) for both propagators of the ATLAS track reconstruction is in addition
presented in [12].
Both the RungeKuttaPropagator and the STEP Propagator stop the numerical iteration when the
distance to the surface drops below a certain cut value. For the last step starting at the position r

f�1,
a simple Taylor expansion to second order is used:

r

final

= r

f�1 + h
dr

ds
|rf�1 +

1
2
h2 d2

r

ds2
|rf�1

, (7)

with h denoting the distance to the destination surface at the approach point f � 1.

Straight and Helical Track Model The RungeKuttaPropagator and STEP Propagator are clearly
the most flexible propagation techniques in the ATLAS track reconstruction software. It is inert to the
Runge-Kutta formalism that in case of a homogenous magnetic field setup, the propagation is carried

5The common data classes are located in the shared TrkExUtils package.
6In fix target experiments, however, a di↵erent choice representing the main particle direction may be taken.

deterministic energy loss
treatment

solve this for any B(r)

we need a numerical integration method !

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Numerical integration
‣ Re-formulate the equation of motion as a movement along z

40

3.4 Track propagation

3.4.2 The Runge-Kutta propagator

The Runge-Kutta propagator is taken from the xKalman package [46]. It follows the
path of a particle through an inhomogeneous magnetic field by taking one step at a
time. At each step it uses the Runge-Kutta-Nystrøm integration technique [47, 48] to
solve the equation of motion numerically. It can also perform straight line propagation
and propagation in a constant field (helix) if required.

Neglecting material interactions and radiative corrections, the equation of motion
for a particle with charge q in a magnetic ✏B field is:

d✏p

dt
= q✏v ⇥ ✏B. (3.17)

It can be shown [48] that this equation can be written as the following set of di�erential
equations:

d2x

dz2
=

q

p
R

⇧
dx

dz

dy

dz
Bx �

⇤
1 +

�
dx

dz

⇥2
⌅

By +
dy

dz
Bz

⌃
, (3.18)

d2y

dz2
=

q

p
R

⇧⇤
1 +

�
dy

dz

⇥2
⌅

Bx �
dx

dz

dy

dz
By �

dx

dz
Bz

⌃
, (3.19)

where the function R is:

R =
ds

dz
=

⌥

1 +

�
dx

dz

⇥2

+

�
dy

dz

⇥2

. (3.20)

The Runge-Kutta method solves these equations for a step of size h by evaluating the
right side of Eq. (3.18) and Eq. (3.19) at a number of points along the step, and
taking a weighted average of the results. The Runge-Kutta propagator in ATLAS uses
a fourth order method that uses three points in each step. The error on the propagation
is proportional to the step size to the fifth power. Higher order methods use more points
per step and are therefore more accurate, but at the cost of requiring more computations.

The error on the propagation is monitored by also performing a third order propa-
gation at each step, and comparing the results. If the positions of the two propagations
di�er too much then the propagation is attempted again with half the step size. This is
called ‘adaptive step size control’. The propagator also monitors the remaining distance
to the target surface at each step. If this distance is below a certain value (typically a
few microns), a Taylor expansion is performed on the position and direction of the track
to reach the surface.

53

3.4 Track propagation

3.4.2 The Runge-Kutta propagator

The Runge-Kutta propagator is taken from the xKalman package [46]. It follows the
path of a particle through an inhomogeneous magnetic field by taking one step at a
time. At each step it uses the Runge-Kutta-Nystrøm integration technique [47, 48] to
solve the equation of motion numerically. It can also perform straight line propagation
and propagation in a constant field (helix) if required.

Neglecting material interactions and radiative corrections, the equation of motion
for a particle with charge q in a magnetic ✏B field is:

d✏p

dt
= q✏v ⇥ ✏B. (3.17)

It can be shown [48] that this equation can be written as the following set of di�erential
equations:

d2x

dz2
=

q

p
R

⇧
dx

dz

dy

dz
Bx �

⇤
1 +

�
dx

dz

⇥2
⌅

By +
dy

dz
Bz

⌃
, (3.18)

d2y

dz2
=

q

p
R

⇧⇤
1 +

�
dy

dz

⇥2
⌅

Bx �
dx

dz

dy

dz
By �

dx

dz
Bz

⌃
, (3.19)

where the function R is:

R =
ds

dz
=

⌥

1 +

�
dx

dz

⇥2

+

�
dy

dz

⇥2

. (3.20)

The Runge-Kutta method solves these equations for a step of size h by evaluating the
right side of Eq. (3.18) and Eq. (3.19) at a number of points along the step, and
taking a weighted average of the results. The Runge-Kutta propagator in ATLAS uses
a fourth order method that uses three points in each step. The error on the propagation
is proportional to the step size to the fifth power. Higher order methods use more points
per step and are therefore more accurate, but at the cost of requiring more computations.

The error on the propagation is monitored by also performing a third order propa-
gation at each step, and comparing the results. If the positions of the two propagations
di�er too much then the propagation is attempted again with half the step size. This is
called ‘adaptive step size control’. The propagator also monitors the remaining distance
to the target surface at each step. If this distance is below a certain value (typically a
few microns), a Taylor expansion is performed on the position and direction of the track
to reach the surface.

53

10

solved by templating the private propagation methods to the di↵erent surfaces by the actual charged
or neutral parameters type. The HelixPropagator simply uses the StraightLinePropagator for any
parameters transport of neutral parameters or in case of a no-field environment. The transport of the
neutral parameters classes is fully supported with ATLAS release 13.1.0.

2.3 Numerical propagation: the RungeKuttaPropagator and STEP Propagator

Most of the track parameter propagations to be performed in the ATLAS event reconstruction are
within a highly inhomogeneous magnetic field where a global track model can not be used for solv-
ing the transport equations. Hence, a fast numerical solution for calculating the intersection of the
trajectory with the destination surface is needed. In ATLAS this is realised by two implementa-
tions of the IPropagator interface, the RungeKuttaPropagator and STEP Propagator. Both rely on
a fourth order Runge-Kutta-Nystrøm formalism with an integrated adaptive step estimation. The
main di↵erence between the two realisations is that the STEP Propagator includes energy loss in the
equation of motion and applies corrections to the covariance matrices continuously during the param-
eter transport along the track. It is designed for the description of a particle that traverses a dense
block of material, while the RungeKuttaPropagator complies with the classical model of point-like
material update on detector layers that is carried out by dedicated AlgTool classes in the ATLAS
track extrapolation engine. Both IPropagator implementations perform the propagation in global
coordinates and use common Jacobian matrices for the transformations between the global frame
and local surface-attached coordinate systems5. The equation of motion of a charged particle with
momentum p and mass m through a magnetic field B(r) can be expressed in many di↵erent ways that
mostly di↵er through the parameterisation and choice of the free parameter. For collider experiments
a helix-based parameterisation along the arc length s is a good choice since it is not restricting nor
favoring any specific particle direction6. The equation of motion of a particle with charge q, defined
by the Lorentz force, can then — when omitting multiple scattering and energy loss e↵ects — be
written as the second order di↵erential equation

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
, (5)

and, when including an energy loss function g(p, r), as

d2
r

ds2
=

q

p


dr

ds
⇥B(r)

�
+ g(p, r)

dr

ds
. (6)

Equation (5) and Eq. (6) are the fundamental transport equation used by the RungeKuttaPropagator
and STEP Propagator, respectively. The calculations are in both cases performed using the Runge-
Kutta-Nystrøm method, which is well suited to solve second order di↵erential equations. The basic
principle of the Runge-Kutta method can be found in may textbooks [9], an exhaustive review of
the used Runge-Kutta-Nystrøm method and the description of error matrix transport (carried out by
the Bugge-Myrheim method) for both propagators of the ATLAS track reconstruction is in addition
presented in [12].
Both the RungeKuttaPropagator and the STEP Propagator stop the numerical iteration when the
distance to the surface drops below a certain cut value. For the last step starting at the position r

f�1,
a simple Taylor expansion to second order is used:

r

final

= r

f�1 + h
dr

ds
|rf�1 +

1
2
h2 d2

r

ds2
|rf�1

, (7)

with h denoting the distance to the destination surface at the approach point f � 1.

Straight and Helical Track Model The RungeKuttaPropagator and STEP Propagator are clearly
the most flexible propagation techniques in the ATLAS track reconstruction software. It is inert to the
Runge-Kutta formalism that in case of a homogenous magnetic field setup, the propagation is carried

5The common data classes are located in the shared TrkExUtils package.
6In fix target experiments, however, a di↵erent choice representing the main particle direction may be taken.

‣ Integrate to solve for x(z) and y(z) :

‣ Numerical integration methods:
- Euler’s method

- Midpoint method

- Runge-Kutta integration

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Track propagation
‣ Many components of the track reconstruction need the expression of the

track at different places (i.e. surfaces) in the detector

41

lx

ly

z
x

y

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Track propagation
‣ Many components of the track reconstruction need the expression of the

track at different places (i.e. surfaces) in the detector

41

lx

ly

z
x

y

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Track propagation
‣ Many components of the track reconstruction need the expression of the

track at different places (i.e. surfaces) in the detector

41

lx

ly

z
x

y

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Track propagation
‣ Many components of the track reconstruction need the expression of the

track at different places (i.e. surfaces) in the detector

41

lx

ly

z
x

y

d0
z0

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Recap for today

42

θ
𝜙

SUMMARY

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Recap for today

42

θ
𝜙

SUMMARY

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Recap for today

42

θ
𝜙

SUMMARY

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Summary - Tracking detectors

43

Comparison*of*(barrel)*tracker*layouts

ALICE ATLAS CMS
R"inner 3.9"cm 5.0"cm 4.4"cm

R"outer 3.7"m 1.1"m 1.1"m

Length 5"m 5.4"m 5.8"m

|�|"range 0.9 2.5 2.5

B"field 0.5"T 2"T 4"T

Total X0 near"�=0 0.08 (ITS)

+"0.035"(TPC)

+"0.234"(TRD)

0.3 0.4

Power 6"kW"(ITS) 70"kW 60"kW

r� resolution"near"outer"
radius

~"800"�m"TPC
~ 500"�m"TRD

130"�m"per"
TRT"straw

35"�m"per"
strip"layer

pT resolution"at"1GeV"

and"at"""""""""""100"GeV

0.7%

3%"(in"pp)

1.3%

3.8%

0.7%

1.5%

Pippa"Wells,"CERN9"May"2011 40

SUMMARY

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Numerical integration in a nutshell
‣ Euler method with start values xn, yn

- what is the function value at yn+1 at xn+1 = xn + h ?

44

!
!
Accuracy: 1st order

710 Chapter 16. Integration of Ordinary Differential Equations
Sam

ple page from
 NUM

ERICAL RECIPES IN C: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43108-5)
Copyright (C) 1988-1992 by Cam

bridge University Press.Program
s Copyright (C) 1988-1992 by Num

erical Recipes Software.
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any servercom

puter, is strictly prohibited. To order Num
erical Recipes books

or CDRO
M

s, visit website
http://www.nr.com

 or call 1-800-872-7423 (North Am
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside North Am
erica).

CITED REFERENCES AND FURTHER READING:
Gear, C.W. 1971,Numerical Initial Value Problems in Ordinary Differential Equations (Englewood

Cliffs, NJ: Prentice-Hall).
Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-

matical Association of America), Chapter 5.
Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),

Chapter 7.
Lambert, J. 1973, Computational Methods in Ordinary Differential Equations (New York: Wiley).
Lapidus, L., and Seinfeld, J. 1971, Numerical Solution of Ordinary Differential Equations (New

York: Academic Press).

16.1 Runge-Kutta Method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) (16.1.1)

which advances a solution fromxn toxn+1 ≡ xn+h. The formula is unsymmetrical:
It advances the solution through an interval h, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power of h smaller
than the correction, i.e O(h2) added to (16.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of both x and y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

k1 = hf(xn, yn)

k2 = hf
(

xn + 1
2h, yn + 1

2k1

)

yn+1 = yn + k2 + O(h3)

(16.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the method second order. [A method is conventionally called nth
order if its error term is O(hn+1).] In fact, (16.1.2) is called the second-order
Runge-Kutta or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(x, y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Stegun [1], and Gear [2], give various specific formulas that derive from this basic

 ∂y/∂x = f(x,y)

x

y

xn xn+1

ADDON

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Numerical integration in a nutshell
‣ Midpoint method with start values xn, yn

- what is the function value at yn+1 at xn+1 = xn + h ?

45

!
!
Accuracy: 2nd order

 ∂y/∂x = f(x,y)

x

y

xn xn+1
- on the step to xn+1 = xn + h you stop at the midpoint and take this  

derivate for the evaluation of your final value from the full step

710 Chapter 16. Integration of Ordinary Differential Equations

Sam
ple page from

 NUM
ERICAL RECIPES IN C: THE ART O

F SCIENTIFIC CO
M

PUTING
 (ISBN 0-521-43108-5)

Copyright (C) 1988-1992 by Cam
bridge University Press.Program

s Copyright (C) 1988-1992 by Num
erical Recipes Software.

Perm
ission is granted for internet users to m

ake one paper copy for their own personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any servercom
puter, is strictly prohibited. To order Num

erical Recipes books
or CDRO

M
s, visit website

http://www.nr.com
 or call 1-800-872-7423 (North Am

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside North Am

erica).

CITED REFERENCES AND FURTHER READING:
Gear, C.W. 1971,Numerical Initial Value Problems in Ordinary Differential Equations (Englewood

Cliffs, NJ: Prentice-Hall).
Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-

matical Association of America), Chapter 5.
Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),

Chapter 7.
Lambert, J. 1973, Computational Methods in Ordinary Differential Equations (New York: Wiley).
Lapidus, L., and Seinfeld, J. 1971, Numerical Solution of Ordinary Differential Equations (New

York: Academic Press).

16.1 Runge-Kutta Method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) (16.1.1)

which advances a solution fromxn toxn+1 ≡ xn+h. The formula is unsymmetrical:
It advances the solution through an interval h, but uses derivative information only
at the beginning of that interval (see Figure 16.1.1). That means (and you can verify
by expansion in power series) that the step’s error is only one power of h smaller
than the correction, i.e O(h2) added to (16.1.1).

There are several reasons that Euler’s method is not recommended for practical
use, among them, (i) the method is not very accurate when compared to other,
fancier, methods run at the equivalent stepsize, and (ii) neither is it very stable
(see §16.6 below).

Consider, however, the use of a step like (16.1.1) to take a “trial” step to the
midpoint of the interval. Then use the value of both x and y at that midpoint
to compute the “real” step across the whole interval. Figure 16.1.2 illustrates the
idea. In equations,

k1 = hf(xn, yn)

k2 = hf
(

xn + 1
2h, yn + 1

2k1

)

yn+1 = yn + k2 + O(h3)

(16.1.2)

As indicated in the error term, this symmetrization cancels out the first-order error
term, making the method second order. [A method is conventionally called nth
order if its error term is O(hn+1).] In fact, (16.1.2) is called the second-order
Runge-Kutta or midpoint method.

We needn’t stop there. There are many ways to evaluate the right-hand side
f(x, y) that all agree to first order, but that have different coefficients of higher-order
error terms. Adding up the right combination of these, we can eliminate the error
terms order by order. That is the basic idea of the Runge-Kutta method. Abramowitz
and Stegun [1], and Gear [2], give various specific formulas that derive from this basic

ADDON

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Numerical integration in a nutshell
‣ Runge-Kutta method 

with start values

46
image from: Numerical Recipes in C++

Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the initial point, twice at trial midpoints, and once at a trial endpoint.
From these derivatives the final function value (shown as a filled dot) is calculated.

ADDON

A.
 S

al
zb

ur
ge

r -
 T

ra
ck

 a
nd

 V
er

te
x

Re
co

ns
tru

ct
io

n
 -

Pa
rt

1
- H

C
PS

S
Au

g
11

-2
2,

 2
01

4Some food for thoughts

‣ How would you “measure” the Lorentz angle ?

47

‣ Why were if off with our pull distribution ?

!
"
$

%&
'
('

)*
)+
,

!#-(.+&%

/)+#+�&01"2#$(%+

"34!"#$56478

$9:9;936<±9;999=

$7:9;993=±9;9999

$3:9;7=>±9;997

$>:#>;3??±9;99=

$<:9;389>±9;999=

!"#!$!"#$%&'&()#*

‣ Can we do PID with the silicon detector/TPC ?

‣ How can a non-binary readout work ?

‣ Think of a great positive feature of
such double sided modules

